Maine Indian Education

Common Core State Standards
Grade Five Mathematics

Fifth Grade Overview

Operations and Algebraic Thinking (OA)

- Write and interpret numerical expressions.
- Analyze patterns and relationships.

Number and Operations in Base Ten (NBT)

- Understand the place value system.
- Perform operations with multi-digit whole numbers and with decimals to hundredths.

Number and Operations-Fractions (NF)

- Use equivalent fractions as a strategy to add and subtract fractions.
- Apply and extend previous understandings of multiplication and division to multiply and divide fractions.

Measurement and Data (MD)

- Convert like measurement units within a given measurement system.
- Represent and interpret data.
- Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.

Geometry (G)

- Graph points on the coordinate plane to solve real-world and mathematical problems.
- Classify two-dimensional figures into categories based on their properties.

Mathematical Practices (MP)

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Maine Indian Education
 Common Core State Standards Grade Five Mathematics

Fifth Grade: Mathematics Standards - Mathematical Practices - Explanations and Examples

In Grade 5, instructional time should focus on three critical areas: (1) developing fluency with addition and subtraction of fractions, and developing understanding of the multiplication of fractions and of division of fractions in limited cases (unit fractions divided by whole numbers and whole numbers divided by unit fractions); (2) extending division to 2-digit divisors, integrating decimal fractions into the place value system and developing understanding of operations with decimals to hundredths, and developing fluency with whole number and decimal operations; and (3) developing understanding of volume.
(1) Students apply their understanding of fractions and fraction models to represent the addition and subtraction of fractions with unlike denominators as equivalent calculations with like denominators. They develop fluency in calculating sums and differences of fractions, and make reasonable estimates of them. Students also use the meaning of fractions, of multiplication and division, and the relationship between multiplication and division to understand and explain why the procedures for multiplying and dividing fractions make sense. (Note: this is limited to the case of dividing unit fractions by whole numbers and whole numbers by unit fractions.)
(2) Students develop understanding of why division procedures work based on the meaning of base-ten numerals and properties of operations. They finalize fluency with multi-digit addition, subtraction, multiplication, and division. They apply their understandings of models for decimals, decimal notation, and properties of operations to add and subtract decimals to hundredths. They develop fluency in these computations, and make reasonable estimates of their results. Students use the relationship between decimals and fractions, as well as the relationship between finite decimals and whole numbers (i.e., a finite decimal multiplied by an appropriate power of 10 is a whole number), to understand and explain why the procedures for multiplying and dividing finite decimals make sense. They compute products and quotients of decimals to hundredths efficiently and accurately.
(3) Students recognize volume as an attribute of three-dimensional space. They understand that volume can be measured by finding the total number of same-size units of volume required to fill the space without gaps or overlaps. They understand that a 1-unit by 1 -unit by 1 -unit cube is the standard unit for measuring volume. They select appropriate units, strategies, and tools for solving problems that involve estimating and measuring volume. They decompose three-dimensional shapes and find volumes of right rectangular prisms by viewing them as decomposed into layers of arrays of cubes. They measure necessary attributes of shapes in order to determine volumes to solve real world and mathematical problems.

This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona's Department of Education. Maine Indian Education is grateful for their efforts.

Maine Indian Education

Common Core State Standards
Grade Five Mathematics

Operations and Algebraic Thinking (OA)

Write and interpret numerical expressions

Make sense of problems and persevere in solving them. Reaso abstra quant	and Construct viable arguments and critique the reasoning of others.	Model with mathematics.	Use appropriate	Attend to precision.	Look for and make	Look for and express regularity in repeated reasoning.
Standards Students are expected to: 5.OA. 1 Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols. Connection: 5.OA.2	Targets Use order of operations including parenthesis, brackets, or braces. Evaluate expressions using the order of operations (including using parenthesis, brackets, or braces.)	Explanations and Examples This standard builds on the expectations of third grade where students are expected to start learning the conventional order. Students need experiences with multiple expressions that use grouping symbols throughout the year to develop understanding of when and how to use parentheses, brackets, and braces. First, students use these symbols with whole numbers. Then the symbols can be used as students add, subtract, multiply and divide decimals and fractions. Examples: - $\quad(26+18) \div 4 \quad$ Answer: 11 - $\quad\{[2 \times(3+5)]-9\}+[5 \times(23-18)] \quad$ Answer: 32 - $12-(0.4 \times 2) \quad$ Answer: 11.2 - $\quad(2+3) \times(1.5-0.5) \quad$ Answer: 5 - $6-\left(\frac{1}{2}+\frac{1}{3}\right) \quad$ Answer: $51 / 6$ - $\left\{80 \div\left[2 \times\left(3 \frac{1}{2}+1 \frac{1}{2}\right)\right]\right\}+100 \quad$ Answer: 108 To further develop students' understanding of grouping symbols and facility with operations, students place grouping symbols in equations to make the equations true or they compare expressions that are grouped differently. Examples: - $\quad 15-7-2=10 \quad \rightarrow \quad 15-(7-2)=10$ - $3 \times 125 \div 25+7=22 \rightarrow[3 \times(125 \div 25)]+7=22$ - $24 \div 12 \div 6 \div 2=2 \times 9+3 \div 1 / 2 \rightarrow 24 \div[(12 \div 6) \div 2]=(2 \times 9)+(3 \div 1 / 2)$ - Compare $3 \times 2+5$ and $3 \times(2+5)$ - Compare $15-6+7$ and $15-(6+7)$				

This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona's Department of Education. Maine Indian Education is grateful for their efforts.

Maine Indian Education

Common Core State Standards
Grade Five Mathematics

Operations and Algebraic Thinking (OA) Write and interpret numerical expressions							
Make sense of problems and persevere in solving them.Reaso abstra quanti		Construct viable arguments and critique the reasoning of others.	Model with mathematic	Use appropriate tools strategically.		Look for and make use of structure.	Look for and express regularity in repeated reasoning.
Standards Students are expected to: 5.0A. 2 Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7, then multiply by 2" as $2 \boldsymbol{x}$ (8+7). Recognize that $3 x$ $(18932+921)$ is three times as large as $18932+$ 921, without having to calculate the indicated sum of product.	Targets Write exp num wor Write des num Inter exp eval	numerical ssions for given ers with operation operation words to ibe a given rical expression. et numerical ssions without ating them.	Explanations and Examples Students use their understanding of operations and grouping symbols to write expressions and interpret the meaning of a numerical expression. Examples: - Students write an expression for calculations given in words such as "divide 144 by 12 , and then subtract $7 / 8$." They write $(144 \div 12)-7 / 8$. - Students recognize that $0.5 \times(300 \div 15)$ is $1 / 2$ of $(300 \div 15)$ without calculating the quotient.				

This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona's Department of Education. Maine Indian Education is grateful for their efforts.

Maine Indian Education

Common Core State Standards
Grade Five Mathematics

Operations and Algebraic Thinking (OA)

Analyze patterns and relationships

This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona's Department of Education. Maine Indian Education is grateful for their efforts.

Maine Indian Education

Common Core State Standards
Grade Five Mathematics

This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona's Department of Education. Maine Indian Education is grateful for their efforts.

Maine Indian Education

Common Core State Standards
Grade Five Mathematics

Number and Operations in Base Ten (NBT)

Understand the place value system

Make sense of problems and persevere in solving them.			Construct viable arguments and critique the reasoning of others.	Model with mathematics.	Use appropriate tools strategically.	Attend to precision.	Look for and make use of structure.	Look for and express regularity in repeated reasoning.
Standards		Targets		Explanations and Examples				
Students are expected to: 5.NBT. 2 Explain patterns		Represent powers of 10		Examples:				
5.NBT. 2 Explain pat in the number of zer	erns of	using whole number		- Students might write:				
multiplying a number by		Fluently translate between		$\times 10=36 \times 10^{1}=360$				
		powers of ten written as		x $10 \times 10=36 \times 10^{2}=3600$				
patterns in the placement		ten raised to a whole		x $10 \times 10 \times 10=36 \times 10^{3}=36,000$				
a decimal is multiplied or		expanded form, and		人 $10 \times 10 \times 10 \times 10=36 \times 10^{4}=360,000$				
divided by a power of	10.	stan (103	ard notation	- Students might think and/or say:				
Use whole-number exponents to denote		1000).		I noticed that every time, I multiplied by 10 I added a zero to the end of the number. That makes sense because each digit's value became 10 times larger. To make a digit 10 times larger, I have to move it one place value to the left.				
Connections: 5.NBT.1; 5.RI.3;$\text { 5.W. } 2 b$		product when multiplying a number by powers of			en I multiplied 36 ame 360. So I had dreds (instead of 3	by 10 , the 30 becan o add a zero at the tens) and the 6 rep	300. The 6 beca nd to have the 3 esents 6 tens (ins	60 or the 36 present 3 oned of 6 ones).
		Explain the relationship of the placement of the decimal point when a decimal is multiplied or divided by a power of 10 .		- Students should be able to use the same type of reasoning as above to explain why the following multiplication and division problem by powers of 10 make sense.				
				$523 \times 10^{3}=523,000$ The place value of 523 is increased by 3 places.				
				$5.223 \times 10^{2}=522.3$ The place value of 5.223 is increased by 2 places.				
				$52.3 \div 10^{1}=5.23$ The place value of 52.3 is decreased by one place.				

[^0]
Maine Indian Education

Common Core State Standards
Grade Five Mathematics

Number and Operations in Base Ten (NBT) Understand the place value system							
Make sense of problems and persevere in solving them.	stractly and Construct via arguments an the reasoning	Construct viable arguments and critique the reasoning of others.	del with athematics	Use appropriat tools strategica		ook for and m use of structure	Look for and express regula repeated reas
Standards	Targets Read and write decimal to thousandths using base-ten numerals, number names, and expanded form. Use >, =, and < symbols to record the results of comparisons between decimals. Compare two decimals to the thousandths based on the place value of each digit.	Explanations and Examples					
5.NBT. 3 Read, write, and compare decimals to thousandths:		fractions with denominators of 10 and 100 . They use concrete models and number lines to extend this understanding to decimals to the thousandths. Models may include base ten blocks, place value charts, grids, pictures, drawings, manipulatives, technology-based, etc. They read decimals using fractional language and write decimals in fractional form, as well as in expanded notation as show in the standard 3a.					
a. Read and write		language and write decimals in fractional form, as well as in expanded notation as show in the standard 3a. This investigation leads them to understanding equivalence of decimals $(0.8=0.80=0.800)$.					
base-ten numerals,		- Some equivalent forms of 0.72 are:$72 / 100 \quad 70 / 100+2 / 100$					
number names, and							
		. 720					
expanded form, e.g., $347.392=3 \times 100$		$\mathrm{x}(1 / 10)+2 \mathrm{x}(1 / 100)+0 \mathrm{x}(1 / 1000)$					
$+4 \times 10+7 \times 1+3 \times$		20/1000					
$\begin{aligned} & (1 / 10)+9 \times(1 / 100)+2 \\ & \times(1 / 1000) . \end{aligned}$		$0.70+0.02$ Students need to understand the size of decimal numbers and relate them to common benchmarks such as					
b. Compare two decimals to		thousandths is simplified if students use their understanding of fractions to compare decimals.					
thousandths based on meanings of the digits		- Comparing 0.25 and 0.17 , a student might think, " 25 hundredths is more than 17 hundredths". They may also think that it is 8 hundredths more. They may write this comparison as $0.25>0.17$ and recognize that $0.17<0.25$ is another way to express this comparison.					
in each place, using >,			Comparing 0.207 to 0.26 , a student might think, "Both numbers have 2 tenths, so I need to compare the hundredths. The second number has 6 hundredths and the first number has no hundredths so the second number must be larger. Another student might think while writing fractions, "I know that 0.207 is 207 thousandths (and may write 207/1000). 0.26 is 26 hundredths (and may write 26/100) but I can also think of it as 260 thousandths (260/1000). So, 260 thousandths is more than 207 thousandths.				
record the results of							
Connections: 5.RI.5; 5.SL. 6							

This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona's Department of Education. Maine Indian Education is grateful for their efforts.

Maine Indian Education

Common Core State Standards
Grade Five Mathematics

Number and Operations in Base Ten (NBT) Understand the place value system							
Make sense of problems and persevere in solving them. Reason abstrac quantit		Construct viable arguments and critique the reasoning of others.	Model with mathematics	Use appropriate tools strategically.	Attend to precision.	Look for and make use of structure.	Look for and express regularity in repeated reasoning.
Standards Students are expected to: 5.NBT. 4 Use place value understanding to round decimals to any place.	Targets Use knowledge of base ten and place value to round decimals to any place.		Explanations and Examples When rounding a decimal to a given place, students may identify the two possible answers, and use their understanding of place value to compare the given number to the possible answers. Example: - Round 14.235 to the nearest tenth. Students recognize that the possible answer must be in tenths thus, it is either 14.2 or 14.3 . They then identify that 14.235 is closer to 14.2 (14.20) than to 14.3 (14.30). 14.2 14.3				

This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona’s Department of Education. Maine Indian Education is grateful for their efforts.

Maine Indian Education

Common Core State Standards
Grade Five Mathematics

Number and Operations in Base Ten (NBT)

Perform operations with multi-digit whole numbers and with decimals to hundredths

Make sense of problems and persevere in solving them.		Construct viable arguments and critique the reasoning of others.	Model with mathematics.	Use appropriate tools strategically.	Attend to precision.	Look for and make use of structure.	Look for and express regularity in repeated reasoning.
Standards Students are expected to: 5.NBT. 5 Fluently multiply multi-digit whole numbers using the standard algorithm	Targets Fluently multiply multidigit whole numbers using the standard algorithm.		Explanations and Examples In prior grades, students used various strategies to multiply. Students can continue to use these different strategies as long as they are efficient, but must also understand and be able to use the standard algorithm. In applying the standard algorithm, students recognize the importance of place value. Example: 123×34. When students apply the standard algorithm, they, decompose 34 into $30+4$. Then they multiply 123 by 4 , the value of the number in the ones place, and then multiply 123 by 30 , the value of the 3 in the tens place, and add the two products.				

This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona's Department of Education. Maine Indian Education is grateful for their efforts.

Maine Indian Education

Common Core State Standards

Grade Five Mathematics

Number and Operations in Base Ten (NBT)

Perform operations with multi-digit whole numbers and with decimals to hundredths

Make sense of problems and persevere in solving them.	Reason abstractly and quantitatively.	Construct viable arguments and critique the reasoning of others.	Model with mathematics.	Use appropriate tools strategically.	Attend to precision.	Look for and make use of structure.	Look for and express regularity in repeated reasoning.

Targets

Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors.
Use strategies based on place value, the properties of operations, and/or the relationship between multiplication and division to solve division problems. Illustrate and explain division calculations by using equations, rectangular arrays, and/or area models.

Explanations and Examples
In fourth grade, students' experiences with division were limited to dividing by one-digit divisors. This standard extends students' prior experiences with strategies, illustrations, and explanations. When the two-digit divisor is a "familiar" number, a student might decompose the dividend using place value.

Example:

- Using expanded notation $\sim 2682 \div 25=(2000+600+80+2) \div 25$
- Using his or her understanding of the relationship between 100 and 25 , a student might think:
- I know that 100 divided by 25 is 4 so 200 divided by 25 is 8 and 2000 divided by 25 is 80 .
- 600 divided by 25 has to be 24 .
- Since 3×25 is 75 , I know that 80 divided by 25 is 3 with a reminder of 5. (Note that a student might divide into 82 and not 80)
- I can't divide 2 by 25 so 2 plus the 5 leaves a remainder of 7 .
- $80+24+3=107$. So, the answer is 107 with a remainder of 7 .
- Using an equation that relates division to multiplication, $25 \times n=2682$, a student might estimate the answer to be slightly larger than 100 because s/he recognizes that $25 \times 100=$ 2500.
- Example: $968 \div 21$

Using base ten models, a student can represent 962 and use the models to make an array with one dimension of 21 . The student continues to make the array until no more groups of 21 can be made. Remainders are not part of the array.

Maine Indian Education

Common Core State Standards
Grade Five Mathematics

Number and Operations in Base Ten (NBT)						
Perform operations with multi-digit whole numbers and with decimals to hundredths continued						
Make sense of problems and persevere in solving them.	Reason abstractly and quantitatively	Construct viable arguments and critique the reasoning of others.	Model with mathematics	Use appropriate tools strategically.	Attend to precision.	Lo
Standards Students are expected to: 5.NBT.6. continued	Targets					
			- An area model for division is shown below model, s /he keeps track of how much of the			
			64		$6 4 \longdiv { 9 9 8 4 }$	
			100		-6400 (100 x	
			6400	3584		
				-3200 (50×64)		
					384	
			50	3200	$\underline{-320}(5 \times 64)$	
					64	
			5	320		
				64	$\frac{-64}{0}{ }^{(1 \times 64)}$	

This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona's Department of Education. Maine Indian Education is grateful for their efforts.

Maine Indian Education

Common Core State Standards
Grade Five Mathematics

Number and Operations in Base Ten (NBT)

Perform operations with multi-digit whole numbers and with decimals to hundredths

[^1]
Maine Indian Education

Common Core State Standards

Grade Five Mathematics

Number and Operations in Base Ten (NBT)
 Perform operations with multi-digit whole numbers and with decimals to hundredths continued

Make sense of problems and persevere in solving them.	Reason abstractly and quantitatively. Construct viable arguments and critique the reasoning of others.	Model with mathematics.	Use appropriate tools strategically.	Attend to precision.	Look for and make use of structure.	Look for and express regularity in repeated reasoning.
Standards Students are expected to: 5.NBT.7. continued	Targets	Explanations and Examples Example: 4-0.3 - 3 tenths subtracted from 4 wholes. The wholes must be divided into tenths. The answer is 3 and $7 / 10$ or 3.7 . Example: An area model can be useful for illustrating products. Students should be able to describe the partial products displayed by the area model. For example, " $3 / 10$ times $4 / 10$ is $12 / 100$. $3 / 10$ times 2 is $6 / 10$ or $60 / 100$. 1 group of $4 / 10$ is $4 / 10$ or $40 / 100$. 1 group of 2 is 2 ." Example: Finding the number in each group or share - Students should be encouraged to apply a fair sharing model separating decimal values into equal parts such as $2.4 \div 4=0.6$ Continued on next page				

This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona's Department of Education. Maine Indian Education is grateful for their efforts.

Maine Indian Education

Common Core State Standards
Grade Five Mathematics

Number and Operations in Base Ten (NBT)							
Make sense of problems and persevere in solving them.	Reason abstractly and quantitatively.	Construct viable arguments and critique the reasoning of others.	Model with mathematics	Use appropriate tools strategically.		Look for and make use of structure.	Look for and express regularity in repeated reasoning.
Standards Students are expected to: 5.NBT.7. continued		Targets	Explanations and Examples Example: Find the number of groups - Joe has 1.6 meters of rope. He has to cut pieces of rope that are 0.2 meters long. How many can he cut? - To divide to find the number of groups, a student might: - draw a segment to represent 1.6 meters. In doing so, s/he would count in tenths to identify the 6 tenths, and be able identify the number of 2 tenths within the 6 tenths. The student can then extend the idea of counting by tenths to divide the one meter into tenths and determine that there are 5 more groups of 2 tenths. - count groups of 2 tenths without the use of models or diagrams. Knowing that 1 can be thought of as $10 / 10$, a student might think of 1.6 as 16 tenths. Counting 2 tenths, 4 tenths, 6 tenths, . . . 16 tenths, a student can count 8 groups of 2 tenths. - Use their understanding of multiplication and think, " 8 groups of 2 is 16 , so 8 groups of $2 / 10$ is $16 / 10$ or $16 / 10$." Technology Connections: Create models using Interactive Whiteboard software (such as SMART Notebook).				

This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona's Department of Education. Maine Indian Education is grateful for their efforts.

Maine Indian Education

Common Core State Standards

Grade Five Mathematics

Number and Operations-Fractions (NF)

Use equivalent fractions as a strategy to add and subtract fractions

This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona's Department of Education. Maine Indian Education is grateful for their efforts.

Maine Indian Education

Common Core State Standards

Grade Five Mathematics

Number and Operations-Fractions (NF) Use equivalent fractions as a strategy to add and subtract fractions							
Make sense of problems and persevere in solving them.	n itatively.\quadConstruct via arguments a the reasonin	tique	Model with mathematics	Use appropriate tools strategically.	Attend precisio	Look for and make use of structure.	Look for and express regularity in repeated reasoning.
Standards Students are expected to: 5.NF. 2 Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g. by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers. For example, recognize an incorrect result $2 / 5+1 / 2=3 / 7$, by observing that $3 / 7<1 / 2$. Connections: 5.NF.1; 5.RI.7; 5.W.2c; 5.SL.2; 5.SL. 3	Targets Generate equivalent fractions to find like denominators. Solve word problems involving addition and subtraction of fractions with unlike denominators referring to the same whole (e.g. by using visual fraction models or equations to represent the problem). Evaluate the reasonableness of an answer, using fractional number sense, by comparing it to a benchmark fraction.	Expla Exam	tions and Exa es: Jerry was ma other needed Mental estim A student may explanation n total must be cannot be mo Solution:	mples ng two different typ 3 cup of sugar. Ho ion: say that Jerry need y compare both fra ore than 1 . In addit than 2. ea model $\frac{2}{3}$ cup of sugar	es of cook much sug more than tions to $1 / 2$ on, both fr $+\frac{2}{3}=\frac{17}{12}=$	recipe needed $3 / 4$ he need to make b of sugar but less th te that both are la are slightly less $=1 \frac{5}{12}$	p of sugar and the recipes? 2 cups. An r than $1 / 2$ so the 1 so the sum

This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona's Department of Education. Maine Indian Education is grateful for their efforts.

Maine Indian Education

Common Core State Standards
Grade Five Mathematics

Number and Operations-Fractions (NF)

Use equivalent fractions as a strategy to add and subtract fractions continued

This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona’s Department of Education. Maine Indian Education is grateful for their efforts.

Maine Indian Education

Common Core State Standards
Grade Five Mathematics

Number and Operations-Fractions (NF)Use equivalent fractions as a strategy to add							
Make sense of problems and persevere in solving them.	Reason abstractly and quantitatively.	Construct viable arguments and critique the reasoning of others	Model with mathematics.	Use appropriate tools strategically.		Look for and make use of structure.	Look for and express regularity in repeated reasoning.
Standards Students are expected to: 5.NF.2. continued		Targets	Explanations and Examples Estimation skills include identifying when estimation is appropriate, determining the level of accuracy needed, selecting the appropriate method of estimation, and verifying solutions or determining the reasonableness of situations using various estimation strategies. Estimation strategies for calculations with fractions extend from students' work with whole number operations and can be supported through the use of physical models. Example: a - Elli drank $\frac{\frac{a}{5}}{5}$ quart of milk and Javier drank $\frac{1}{10}$ of a quart less than Ellie. How much milk did they drink all together? Solution: $\frac{3}{5}-\frac{1}{10}=\frac{6}{10}-\frac{1}{10}=\frac{5}{10}$ This is how much milk Javier drank $\frac{a}{5}+\frac{5}{10}=\frac{6}{10}+\frac{5}{10}=\frac{11}{10}$ Together they drank $1 \frac{1}{10}$ quarts of milk This solution is reasonable because Ellie drank more than $1 / 2$ quart and Javier drank $1 / 2$ quart so together they drank slightly more than one quart.				

This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona's Department of Education. Maine Indian Education is grateful for their efforts.

Maine Indian Education

Common Core State Standards

Grade Five Mathematics

Number and Operations-Fractions (NF)

Apply and extend previous understandings of multiplication and division to multiply and divide fractions

Make sense of problems and persevere in solving them.	Reason abstractly and quantitatively.	Construct viable arguments and critique the reasoning of others.	Model with mathematics.	Use appropriate tools strategically.	Attend to precision.	Look for and make use of structure.	Look for and express regularity in repeated reasoning.
Stan							

Standards
 Students are expected to:

5.NF. 3 Interpret a fraction as division of the numerator by the denominator $(a / b=a \div b)$. Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. For example, interpret $3 / 4$ as the result of dividing 3 by 4, noting that 3/4 multiplied by 4 equals 3 , and that when 3 wholes are shared equally among 4 people each person has a share of size 3/4. If 9 people want to share a 50 pound sack of rice equally by weight, how many pounds of rice should each person get?
Between what two whole numbers does your answer lie?

Connection: 5.SL. 1

Targets
Interpret a fraction as
division of the numerator by the denominator $(\mathrm{a} / \mathrm{b}=$ $a \div b$).
Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers. (e.g. using visual fraction models or equations to represent the problem).
Interpret the remainder as a fractional part of the problem.

Explanations and Examples
Students are expected to demonstrate their understanding using concrete materials, drawing models, and explaining their thinking when working with fractions in multiple contexts. They read $3 / 5$ as "three fifths" and after many experiences with sharing problems, learn that $3 / 5$ can also be interpreted as " 3 divided by 5 ."

Examples:

- Ten team members are sharing 3 boxes of cookies. How much of a box will each student get?
- When working this problem a student should recognize that the 3 boxes are being divided into 10 groups, so s/he is seeing the solution to the following equation, $10 \times n=3$ (10 groups of some amount is 3 boxes) which can also be written as $n=3 \div 10$. Using models or diagram, they divide each box into 10 groups, resulting in each team member getting $3 / 10$ of a box.
- Two afterschool clubs are having pizza parties. For the Math Club, the teacher will order 3 pizzas for every 5 students. For the student council, the teacher will order 5 pizzas for every 8 students. Since you are in both groups, you need to decide which party to attend. How much pizza would you get at each party? If you want to have the most pizza, which party should you attend?
- The six fifth grade classrooms have a total of 27 boxes of pencils. How many boxes will each classroom receive?

Students may recognize this as a whole number division problem but should also express this equal sharing problem as ${ }^{27} / 6$. They explain that each classroom gets ${ }^{27} / 6$ boxes of pencils and can further determine that each classroom get $43 / 6$ or $41 / 2$ boxes of pencils.

This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona's Department of Education. Maine Indian Education is grateful for their efforts.

Maine Indian Education

Common Core State Standards

Grade Five Mathematics

Number and Operations-Fractions (NF)

Apply and extend previous understandings of multiplication and division to multiply and divide fractions

Make sense of problems and persevere in solving them.	Reason abstractly and quantitatively.	Construct viable arguments and critique the reasoning of others.	Model with mathematics.	Use appropriate tools strategically.	Attend to precision.	Look for and make use of structure.	Look for and express regularity in repeated reasoning.

Standards

Students are expected to:
5.NF. 4 Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.
a. Interpret the product $(a / b) \times q$ as a parts of a partition of q into b equal parts; equivalently, as a result of a sequence of operations $a x q / b$. For example, use a visual fraction model to show $(2 / 3) \times 4=8 / 3$, and create a story context for this equation. Do the same with (2/3) \times $(4 / 5)=8 / 15$. (In general, $(a / b) \times(c / d)$ $=a c / b d$.)
b. Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas
Connections:5.RI.3; 5.W.2b; 5.W.2d; 5.SL. 1

Targets

Find area of a rectangle with fractional side lengths using different strategies. (e.g., tiling with unit squares of the appropriate unit fraction side lengths, multiplying side lengths).
Represent fraction products as rectangular areas.
Justify multiplying fractional side lengths to find the area is the same as tiling a rectangle with unit squares of the appropriate unit fraction side lengths.
Model the area of rectangles with fractional side lengths with unit squares to show the area of rectangles.

Explanations and Examples
Students are expected to multiply fractions including proper fractions, improper fractions, and mixed numbers. They multiply fractions efficiently and accurately as well as solve problems in both contextual and non-contextual situations.

- As they multiply fractions such as $3 / 5 \times 6$, they can think of the operation in more than one way.
$3 x(6 \div 5)$ or $(3 \times 6 / 5)$
(3×6) $\div 5$ or $18 \div 5$ (18/5)
- Students create a story problem for $3 / 5 \times 6$ such as: Isabel had 6 feet of wrapping paper. She used $3 / 5$ of the paper to wrap some presents. How much does she have left?
Every day Tim ran $3 / 5$ of mile. How far did he run after 6 days? (Interpreting this as $6 \times 3 / 5$)
Examples: Building on previous understandings of multiplication
- Rectangle with dimensions of 2 and 3 showing that $2 \times 3=6$.

- Rectangle with dimensions of 2 and $2 / 3$ showing that $2 \times 2 / 3=4 / 3$

Continued on next page

This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona's Department of Education. Maine Indian Education is grateful for their efforts.

Maine Indian Education

Common Core State Standards
Grade Five Mathematics

This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona's Department of Education. Maine Indian Education is grateful for their efforts.

Maine Indian Education

Common Core State Standards

Grade Five Mathematics

This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona's Department of Education. Maine Indian Education is grateful for their efforts.

Maine Indian Education

Common Core State Standards

Grade Five Mathematics

Number and Operations-Fractions (NF)

Apply and extend previous understandings of multiplication and division to multiply and divide fractions

Make sense of problems and persevere in solving them.	Reason abstractly and quantitatively.	Construct viable arguments and critique the reasoning of others.	Model with mathematics.	Use appropriate tools strategically.	Attend to precision.	Look for and make use of structure.	Look for and express regularity in repeated reasoning.

Standards

Students are expected to:
5.NF. 5 Interpret multiplication as scaling (resizing), by:
a. Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication.
b. Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing
multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence $a / b=(n \times a) /(n \times b)$ to the effect of multiplying a / b by 1 .
Connections: 5.RI.3; 5.RI.5; 5.W.2a;
5.W.2b; 5.W.2c; 5.W.2d; 5.W.2e;
5.SL.2; 5.SL. 3

Targets

Know that scaling (resizing) involves multiplication.
Compare the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication. For example, a 2×3 rectangle would have an area twice the length of 3.
Know that multiplying whole numbers and fractions result in products greater than or less than one depending upon the factors.
Draw a conclusion multiplying a fraction greater than one will result in a product greater than the given number.
Draw a conclusion that when you multiply a fraction by one (which can be written as various fractions, ex $2 / 2,3 / 3$, etc.) the resulting fraction is equivalent.
Draw a conclusion that when you multiply a fraction by a fraction, the product will be smaller than the given number.

Explanations and Examples

Examples:

- $\frac{3}{4} \times 7$ is less than 7 because 7 is multiplied by a factor less than 1 so the product must be less than 7 .

- $2 \frac{2}{3} \times 8$ must be more than 8 because 2 groups of 8 is 16 and $2 \frac{2}{3}$ is almost 3 groups of 8 . So the answer must be close to, but less than 24 .
- $\frac{3}{4}=\frac{5 \mathrm{X} 3}{5 \mathrm{X} 4}$ because multiplying $\frac{3}{4}$ by $\frac{5}{5}$ is the same as multiplying by 1 .

Maine Indian Education

Common Core State Standards

Grade Five Mathematics

Number and Operations-Fractions (NF)

Apply and extend previous understandings of multiplication and division to multiply and divide fractions

Make sense of problems and persevere in solving them.	Reason abstractly and quantitatively.	Construct viable arguments and critique the reasoning of others.	Model with mathematics.	Use appropriate tools strategically.	Attend to precision.	Look for and make use of structure.	Look for and express regularity in repeated reasoning.

Standards
Students are expected
to
5.NF. 6 Solve
5.NF. 6 Solve
real world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem.

Connections: 5.RI.7; 5.W.2e

Targets \quad Explanations and Examples
Represent word problems involving multiplication of fractions and mixed numbers (e.g. by using visual fraction models or equations to represent the problem).
Solve real world problems involving multiplication of fractions and mixed numbers.

Examples:

 area of the school flag?- Evan bought 6 roses for his mother. $\frac{2}{3}$ of them were red. How many red roses were there?
- Using a visual, a student divides the 6 roses into 3 groups and counts how many are in 2 of the 3 groups.

o A student can use an equation to solve. $\frac{2}{3} \times 6=\frac{12}{3}=4$ red roses
- Mary and Joe determined that the dimensions of their school flag needed to be $1 \frac{1}{3} \mathrm{ft}$. by $2 \frac{1}{4} \mathrm{ft}$. What will be the
- A student can draw an array to find this product and can also use his or her understanding of decomposing numbers to explain the multiplication. Thinking ahead a student may decide to multiply by $1 \frac{1}{3}$ instead of $2 \frac{1}{4}$.

The explanation may include the following:
o First, I am going to multiply $2 \frac{1}{4}$ by 1 and then by $\frac{1}{3}$.
○ When I multiply $2 \frac{1}{4}$ by 1 , it equals $2 \frac{1}{4}$.
o Now I have to multiply $2 \frac{1}{4}$ by $\frac{1}{3}$.

- $\frac{1}{3}$ times 2 is $\frac{2}{3}$.

○ $\frac{1}{3}$ times $\frac{1}{4}$ is $\frac{1}{12}$.
So the answer is $2 \frac{1}{4}+\frac{2}{3}+\frac{1}{12}$ or $2 \frac{3}{12}+\frac{8}{12}+\frac{1}{12}=2 \frac{12}{12}=3$

This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona's Department of Education. Maine Indian Education is grateful for their efforts.

Maine Indian Education

Common Core State Standards

Grade Five Mathematics

Number and Operations-Fractions (NF)

Apply and extend previous understandings of multiplication and division to multiply and divide fractions

Make sense of problems and persevere in solving them.	Reason abstractly and quantitatively.	Construct viable arguments and critique the reasoning of others.	Model with mathematics.	Use appropriate tools strategically.	Attend to precision.	Look for and make use of structure.	Look for and express regularity in repeated reasoning.

Standards

Students are expected to:
5.NF. 7 Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. ${ }^{1}$
${ }^{1}$ Students able to multiply fractions in general can develop strategies to divide fractions in general, by reasoning about the relationship between multiplication and division. But division of a fraction by a fraction is not a requirement at this grade.
a. Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create a story context for (1/3) divided by 4, and use a visual fraction model to show the quotient. Use relationships between multiplication and division to explain that $(1 / 3) \div 4=1 / 12$
because (1/12) x $4=1 / 3$.

Continued on next page

Targets

Know the relationship between multiplication and division.
Interpret division of a unit fraction by a whole number and justify your answer using the relationship between multiplication and division, and by creating story problems, using visual models, and relationship to multiplication, etc.
Interpret division of a whole number by a unit fraction and justify your answer using the relationship between multiplication and division, and by representing the quotient with a visual fraction model.
Solve real world problems involving division of unit fractions by whole numbers other than 0 and division of whole numbers by unit fractions using strategies such as visual fractions models and equations.

Explanations and Examples

In fifth grade, students experience division problems with whole number divisors and unit fraction dividends (fractions with a numerator of 1) or with unit fraction divisors and whole number dividends. Students extend their understanding of the meaning of fractions, how many unit fractions are in a whole, and their understanding of multiplication and division as involving equal groups or shares and the number of objects in each group/share. In sixth grade, they will use this foundational understanding to divide into and by more complex fractions and develop abstract methods of dividing by fractions.

Example: Knowing the number of groups/shares and finding how many/much in each group/share

- Four students sitting at a table were given $1 / 3$ of a pan of brownies to share. How much of a pan will each student get if they share the pan of brownies equally?
The diagram shows the $1 / 3$ pan divided into 4 equal shares with each share equaling $1 / 12$ of the pan.

Continued on next page

This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona's Department of Education. Maine Indian Education is grateful for their efforts.

Maine Indian Education

Common Core State Standards

 Grade Five MathematicsNumber and Operations-Fractions (NF)
Apply and extend previous understandings of multiplication and division to multiply and divide fractions continued

This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona's Department of Education. Maine Indian Education is grateful for their efforts.

Maine Indian Education

Common Core State Standards

Grade Five Mathematics

Measurement and Data (MD) Convert like measurement units								
Make sense of problems and persevere in solving them. Reaso abstra quantit	Reason abstractly and quantitatively.	Construct viable arguments and critique the reasoning of others.	Model with mathematics.		Use appropriate tools strategically.	Attend to precision.	Look for and make use of structure.	Look for and express regularity in repeated reasoning.
Standards Students are expected to: 5.MD. 1 Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems.	Targets Recognize units of measurement within the same system. Divide and multiply to change units. Convert units of measurement within the same system. Solve multi-step, real world problems that involve converting units.			In fifth grade, students build on their prior knowledge of related measurement units to determine equivalent measurements. Prior to making actual conversions, they examine the units to be converted, determine if the converted amount will be more or less units than the original unit, and explain their reasoning. They use several strategies to convert measurements. When converting metric measurement, students apply their understanding of place value and decimals.				

This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona's Department of Education. Maine Indian Education is grateful for their efforts.

Maine Indian Education

Common Core State Standards
Grade Five Mathematics

Measurement and Data (MD)						
Make sense of problems and persevere in solving them. Reason abstractly quantitativ	Construct viable arguments and critique the reasoning of others.	Model with mathematics	Use appropriate tools strategically.	Attend to precision.	Look for and make use of structure.	Look for and express regularity in repeated reasoning.
Standards Students are expected to: 5.MD. 2 Make a line plot to display a data set of measurements in fractions of a unit ($1 / 2,1 / 4,1 / 8$). Use operations of fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally.	Targets Identify benchmark fractions (1/2, 1/4, 1/8) Make a line plot to display a data set of measurements in fractions of a unit (1/2, $1 / 4,1 / 8)$. Solve problems involving information presented in line plots which use fractions of a unit ($1 / 2$, $1 / 4,1 / 8$) by adding, subtracting, multiplying, and dividing fractions.	Expla Stud eith the bea	Ten beakers, me The line plot above If the liquid is re beaker have? (T apply their und addition and/or kers. Then the s.	red in liters, are Liquid Amount of Liq shows_the am tributed equally amount is the tanding of oper tiplication to d of the liters is	led with a liqu Beakers (in Liters) of liquid in li how much liqu n.) ons with fractio mine the total red evenly am	in 10 beakers. would each They use mber of liters in the ten

[^2]
Maine Indian Education

Common Core State Standards

Grade Five Mathematics

This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona's Department of Education. Maine Indian Education is grateful for their efforts.

Maine Indian Education

Common Core State Standards

Grade Five Mathematics

This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona's Department of Education. Maine Indian Education is grateful for their efforts.

Maine Indian Education

Common Core State Standards

Grade Five Mathematics

Measurement and Data (MD)

Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition

Make sense of problems and persevere in solving them.	Reason abstractly and quantitatively.	Construct viable arguments and critique the reasoning of others.	Model with mathematics.	Use appropriate tools strategically.	Attend to precision.	Look for and make use of structure.	Look for and express regularity in repeated reasoning.

Standards

Students are expected to:
5.MD. 5 Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume.
a. Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number procedures as volumes, e.g., to represent the associative property of multiplication.

Continued on next page

Targets

Identify a right
rectangular prism.
Multiply the three dimensions in any order to calculate volume.
(Commutative and associative properties).
Develop volume
formula for a rectangle prism by comparing volume when filled with cubes to volume by multiplying the height by the area of the base, or when multiplying the edge lengths (LxWxH).
Find the volume of a right rectangular prism with whole number side lengths by packing it with unit cubes.

Explanations and Examples

Students need multiple opportunities to measure volume by filling rectangular prisms with cubes and looking at the relationship between the total volume and the area of the base. They derive the volume formula (volume equals the area of the base times the height) and explore how this idea would apply to other prisms. Students use the associative property of multiplication and decomposition of numbers using factors to investigate rectangular prisms with a given number of cubic units.
Examples:

- When given 24 cubes, students make as many rectangular prisms as possible with a volume of 24 cubic units. Students build the prisms and record possible dimensions.

Length	Width	Height
1	2	12
2	2	6
4	2	3
8	3	1

- Students determine the volume of concrete needed to build the steps in the diagram below.

- A homeowner is building a swimming pool and needs to calculate the volume of water needed to fill the pool. The design of the pool is shown in the illustration below.

This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona's Department of Education. Maine Indian Education is grateful for their efforts.

Maine Indian Education

Common Core State Standards

Grade Five Mathematics

Measurement and Data (MD)					
Make sense of problems and persevere in solving them. Reason abstractly and quantitatively.	Construct viable arguments and critique the reasoning of others. Model with mathematics. Use too str	ppropriate gically.	Attend to precision.	Look for and make use of structure.	Look for and express regularity in repeated reasoning.
Standards Students are expected to: 5.MD. 5 continued b. Apply the formulas $V=l \times w \times h$ and $V=B x h$ for rectangular prisms to find volumes of right rectangular prisms with wholenumber lengths in the context of solving real world and mathematical problems. c. Recognize volume as additive. Find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the nonoverlapping parts, applying this technique to solve real world problems. Connections: 5.RI.3; 5.W.2c; 5.W.2d; 5.SL.2; 5.SL. 3	Targets Know that " B " is the area of the base. Apply the following formulas to right rectangular prisms having whole number edge lengths in the context of real world mathematical problems: Volume $=$ length x width x height. Volume $=$ area of base x height . Recognize volume as additive. Solve real world problems by decomposing a solid figure into two non-overlapping right rectangular prisms and adding their volumes.	Explanatio See above	and Ex		

This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona's Department of Education. Maine Indian Education is grateful for their efforts.

Maine Indian Education

Common Core State Standards

Grade Five Mathematics

Geometry (G)

Graph points on the coordinate plane to solve real-world and mathematical problems

Make sense of problems and persevere in solving them.	Reason abstractly and quantitatively.	Construct viable arguments and critique the reasoning of others.	Model with mathematics.	Use appropriate tools strategically.	Attend to precision.	Look for and make use of structure.	Look for and express regularity in repeated reasoning.

Standards
Students are expected to:
5.G. 1 Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x-axis and x coordinate, y-axis and y coordinate).
Connections: 5.RI.4; 5.W.2d; 5.SL. 6

Targets

Define the coordinate system
Identify the x - and y -axis Locate the origin on the coordinate system Identify coordinates of a point on a coordinate system
Recognize and describe the connection between the ordered pair and the x - and y-axis (from the origin)

Explanations and Examples

Examples:

- Students can use a classroom size coordinate system to physically locate the coordinate point $(5,3)$ by starting at the origin point $(0,0)$, walking 5 units along the x axis to find the first number in the pair (5), and then walking up 3 units for the second number in the pair (3). The ordered pair names a point in the plane.

- Graph and label the points below in a coordinate system.
A $(0,0)$
B $(5,1)$
C $(0,6)$
D $(2.5,6)$
E $(6,2)$
0
F $(4,1)$
G $(3,0)$
- B $(5,1)$
- C $(0,6)$
- D $(2.5,6)$
- E $(6,2)$
- F $(4,1)$
- $G(3,0)$

This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona’s Department of Education. Maine Indian Education is grateful for their efforts.

Maine Indian Education

Common Core State Standards
Grade Five Mathematics

Geometry (G)

Graph points on the coordinate plane to solve real-world and mathematical problems

This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona's Department of Education. Maine Indian Education is grateful for their efforts.

Maine Indian Education

Common Core State Standards

Grade Five Mathematics

Geometry (G)

Classify two-dimensional figures into categories based on their properties

[^3]
Maine Indian Education

Common Core State Standards

Grade Five Mathematics

Geometry (G)

Classify two-dimensional figures into categories based on their properties

This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona's Department of Education. Maine Indian Education is grateful for their efforts.

Maine Indian Education
 Common Core State Standards
 Grade Five Mathematics

Standards for Mathematical Practice (MP)			
Standards Students are expected to:	Mathematical Practices are listed throughout the grade level document in the end colum to reflect the need to connect the mathematical practices to mathematical content in instruction.	Explanations and Examples	
5.MP.1. Make sense of problems and persevere in solving them.		Students solve problems by applying their understanding of operations with whole numbers, decimals, and fractions including mixed numbers. They solve problems related to volume and measurement conversions. Students seek the meaning of a problem and look for efficient ways to represent and solve it. They may check their thinking by asking themselves, "What is the most efficient way to solve ehe problem?", "Does this make sense?", and "Can I solve the problem in a different way?".	
5.MP.2. Reason abstractly and quantitatively.	Fifth graders should recognize that a number represents a specific quantity. They connect quantities to written symbols and create a logical representation of the problem at hand, considering both the appropriate units involved and the meaning of quantities. They extend this understanding from whole numbers to their work with fractions and decimals. Students write simple expressions that record calculations with numbers and represent or round numbers using place value concepts.		
5.MP.3. Construct viable arguments and critique the reasoning of others.	In fifth grade, students may construct arguments using concrete referents, such as objects, pictures, and drawings. They explain calculations based upon models and properties of operations and rules that generate patterns. They demonstrate and explain the relationship between volume and multiplication. They refine their mathematical communication skills as they participate in mathematical discussions involving questions like "How did you get that?" and "Why is that true?" They explain their thinking to others and respond to others" thinking.		
5.MP.4. Model with mathematics.	Students experiment with representing problem situations in multiple ways including numbers, words (mathematical language), drawing pictures, using objects, making a chart, list, or graph, creating equations, etc. Students need opportunities to connect the different representations and explain the connections. They should be able to use all of these representations as needed. Fifth graders should evaluate their results in the context of the situation and whether the results make sense. They also evaluate ene utility of models to determine which models are most useful and efficient to solve problems.		

This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona's Department of Education. Maine Indian Education is grateful for their efforts.

Maine Indian Education

Common Core State Standards
Grade Five Mathematics

Standards for Mathematical Practice (MP)		
Standards Students are expected to:	Mathematical Practices are listed throughout the grade level document in the 2nd column to reflect the need to connect the mathematical practices to mathematical content in instruction.	Explanations and Examples
5.MP.5. Use appropriate tools strategically.		Fifth graders consider the available tools (including estimation) when solving a mathematical problem and decide when certain tools might be helpful. For instance, they may use unit cubes to fill a rectangular prism and then use a ruler to measure the dimensions. They use graph paper to accurately create graphs and solve problems or make predictions from real world data.
5.MP.6. Attend to precision.	Students continue to refine their mathematical communication skills by using clear and precise language in their discussions with others and in their own reasoning. Students use appropriate terminology when referring to expressions, fractions, geometric figures, and coordinate grids. They are careful about specifying units of measure and state the meaning of the symbols they choose. For instance, when figuring out the volume of a rectangular prism they record their answers in cubic units.	
5.MP.7. Look for and make use of structure.		In fifth grade, students look closely to discover a pattern or structure. For instance, students use properties of operations as strategies to add, subtract, multiply and divide with whole numbers, fractions, and decimals. They examine numerical patterns and relate them to a rule or a graphical representation.
5.MP.8. Look for and express regularity in repeated reasoning.		Fifth graders use repeated reasoning to understand algorithms and make generalizations about patterns. Students connect place value and their prior work with operations to understand algorithms to fluently multiply multi-digit numbers and perform all operations with decimals to hundredths. Students explore operations with fractions with visual models and begin to formulate generalizations.

This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona's Department of Education. Maine Indian Education is grateful for their efforts.

[^0]: This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona's Department of Education. Maine Indian Education is grateful for their efforts.

[^1]: This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona's Department of Education. Maine Indian Education is grateful for their efforts.

[^2]: This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona's Department of Education. Maine Indian Education is grateful for their efforts.

[^3]: This document is a compilation of the work completed by the Common Wealth of Kentucky's Department of Education (and is being used with permission of the Kentucky Department of Education, Frankfort, Kentucky 40601) and Arizona's Department of Education. Maine Indian Education is grateful for their efforts.

